Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Neurol Neuroimmunol Neuroinflamm ; 8(5)2021 07.
Article in English | MEDLINE | ID: covidwho-1278138

ABSTRACT

OBJECTIVE: Coronavirus disease (COVID-19) has been associated with a large variety of neurologic disorders. However, the mechanisms underlying these neurologic complications remain elusive. In this study, we aimed at determining whether neurologic symptoms were caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) direct infection or by either systemic or local proinflammatory mediators. METHODS: In this cross-sectional study, we checked for SARS-CoV-2 RNA by quantitative reverse transcription PCR, SARS-CoV-2-specific antibodies, and 49 cytokines/chemokines/growth factors (by Luminex) in the CSF +/- sera of a cohort of 22 COVID-19 patients with neurologic presentation and 55 neurologic control patients (inflammatory neurologic disorder [IND], noninflammatory neurologic disorder, and MS). RESULTS: We detected anti-SARS-CoV-2 immunoglobulin G in patients with severe COVID-19 with signs of intrathecal synthesis for some of them. Of the 4 categories of tested patients, the CSF of IND exhibited the highest level of cytokines, chemokines, and growth factors. By contrast, patients with COVID-19 did not present overall upregulation of inflammatory mediators in the CSF. However, patients with severe COVID-19 (intensive care unit patients) exhibited higher concentrations of CCL2, CXCL8, and vascular endothelium growth factor A (VEGF-A) in the CSF than patients with a milder form of COVID-19. In addition, we could show that intrathecal CXCL8 synthesis was linked to an elevated albumin ratio and correlated with the increase of peripheral inflammation (serum hepatocyte growth factor [HGF] and CXCL10). CONCLUSIONS: Our results do not indicate active replication of SARS-CoV-2 in the CSF or signs of massive inflammation in the CSF compartment but highlight a specific impairment of the neurovascular unit linked to intrathecal production of CXCL8.


Subject(s)
Brain Diseases/etiology , COVID-19/complications , Cytokines/cerebrospinal fluid , Inflammation/etiology , Neurovascular Coupling , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Antibodies, Viral/cerebrospinal fluid , Brain Diseases/cerebrospinal fluid , Brain Diseases/immunology , Brain Diseases/physiopathology , COVID-19/cerebrospinal fluid , COVID-19/immunology , Critical Care , Cross-Sectional Studies , Cytokines/blood , Electroencephalography , Female , Humans , Immunoglobulin G/cerebrospinal fluid , Inflammation/cerebrospinal fluid , Inflammation/immunology , Interleukin-8/cerebrospinal fluid , Male , Middle Aged , Neurovascular Coupling/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Young Adult
3.
J Am Med Inform Assoc ; 27(11): 1721-1726, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-1024117

ABSTRACT

Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale.


Subject(s)
Biomedical Research , Computer Security , Coronavirus Infections , Information Dissemination , Pandemics , Pneumonia, Viral , Privacy , COVID-19 , Humans , Information Dissemination/ethics , Internationality , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL